收藏
本资料包专为AI学习者打造,包含37.4GB精选付费内容,涵盖人工智能行业报告、必读经典书籍、机器学习与深度学习算法教程、计算机视觉实战项目等。无论您是初学者还是进阶者,都能从中获取实用的学习资源。资料包内含OpenCV、YOLOV5、MASK-RCNN、Unet等实战视频课程及配套资料,助您快速掌握AI核心技术。此外,还提供超详细的人工智能学习大纲和论文合集,帮助您系统化学习并紧跟行业前沿。立即下载,开启您的AI学习之旅!
以下云资源目录树快照生成于[1年前],该学习资料由夸克云用户[KK*5525]分享(只展示大部分文件和目录)
37.4GB AI精选付费资料包:从入门到实战25.47 GB(mp4、flv视频253节;png、jpg图片51张;pdf、docx、txt文档214个;zip、rar压缩包37个;pptx演示文稿1个;)
一:人工智能论文合集
图神经网络(GNN)100篇论文集
论文集索引.jpg29.73KB
Survey
一般推荐
NeuralMessagePassingforQuantumChemistry.pdf511.15KB
GeometricDeepLearning-GoingbeyondEuclideandata.pdf5.26MB
DeepLearningonGraphs-ASurvey.pdf1.8MB
ComputationalCapabilitiesofGraphNeuralNetworks(1).pdf1.28MB
AComprehensiveSurveyonGraphNeuralNetworks.pdf1.8MB
极力推荐
TheGraphNeuralNetworkModel.pdf1.43MB
RelationalInductiveBiases,DeepLearning,andGraphNetworks.pdf8.99MB
Non-localNeuralNetworks.pdf1.24MB
GraphNeuralNetworks:AReviewofMethodsandApplications.pdf2.67MB
Models
trainingmethods
Neuralnetworksforrelationallearning-anexperimentalcomparison.pdf1.15MB
LearningSteady-StatesofIterativeAlgorithmsoverGraphs.pdf3.09MB
Knowledge-GuidedRecurrentNeuralNetworkLearningforTask-OrientedActionPrediction.pdf1000.46KB
HierarchicalGraphRepresentationLearningwithDifferentiablePooling.pdf2.31MB
Graphical-BasedLearningEnvironmentsforPatternRecognition.pdf335.92KB
CovariantCompositionalNetworksForLearningGraphs.pdf482.53KB
receptivefieldcontrol
StochasticTrainingofGraphConvolutionalNetworkswithVarianceReduction.pdf1.25MB
neighborhoodsampling
InductiveRepresentationLearningonLargeGraphs.pdf1.04MB
FastGCN-FastLearningwithGraphConvolutionalNetworksviaImportanceSampling.pdf358.35KB
AdaptiveSamplingTowardsFastGraphRepresentationLearning.pdf579.95KB
boosting
DeeperInsightsintoGraphConvolutionalNetworksforSemi-SupervisedLearning.pdf1.96MB
propagation_type
skip
Semi-SupervisedClassificationwithGraphConvolutionalNetworks.pdf853.42KB
RepresentationLearningonGraphswithJumpingKnowledgeNetworks.pdf3.15MB
gate
Sentence-StateLSTMforTextRepresentation.pdf442.27KB
GatedGraphSequenceNeuralNetworks.pdf748.16KB
convolution
Structure-AwareConvolutionalNeuralNetworks.pdf1.36MB
SpectralNetworksandDeepLocallyConnected.pdf1.86MB
LearningConvolutionalNeuralNetworksforGraphs.pdf639.85KB
DeepConvolutionalNetworksonGraph-StructuredData.pdf4.57MB
ConvolutionalNeuralNetworksonGraphswithFastLocalizedSpectralFiltering.pdf459.44KB
BayesianSemi-supervisedLearningwithGraphGaussianProcesses.pdf689.89KB
attention
GraphClassificationusingStructuralAttention.pdf2.47MB
GraphAttentionNetworks.pdf1.48MB
AttentionIsAllYouNeed.pdf2.1MB
others
Geometricdeeplearningongraphsandmanifoldsusingmixturemodelcnns.pdf7.23MB
Diffusion-ConvolutionalNeuralNetworks.pdf366.35KB
DerivingNeuralArchitecturesfromSequenceandGraphKernels.pdf687.05KB
DeepSets.pdf5.11MB
ContextualGraphMarkovModel-ADeepandGenerativeApproachtoGraphProcessing.pdf570.59KB
CelebrityNet-ASocialNetworkConstructedfromLarge-ScaleOnlineCelebrityImages.pdf16.33MB
Anewmodelforlearningingraphdomains.pdf177.61KB
AComparisonbetweenRecursiveNeuralNetworksandGraphNeuralNetworks.pdf247.2KB
graph_type
Mean-fieldtheoryofgraphneuralnetworksingraphpartitioning.pdf369.44KB
HowPowerfulareGraphNeuralNetworks-.pdf678.3KB
GraphPartitionNeuralNetworksforSemi-SupervisedClassification.pdf713.9KB
GraphNeuralNetworksforRankingWebPages.pdf1.01MB
GraphNeuralNetworksforObjectLocalization.pdf221.83KB
GraphCapsuleConvolutionalNeuralNetworks.pdf1.93MB
AdaptiveGraphConvolutionalNeuralNetworks.pdf803.92KB
edge-informativegraph
Modelingrelationaldatawithgraphconvolutionalnetworks.pdf323.62KB
Graph-to-SequenceLearningusingGatedGraphNeuralNetworks.pdf4.06MB
directedgraph
RethinkingKnowledgeGraphPropagationforZero-ShotLearning.pdf4.21MB
Applications
text
RecurrentRelationalNetworks.pdf307KB
N-aryrelationextractionusinggraphstateLSTM.pdf455.67KB
JointlyMultipleEventsExtractionviaAttention-basedGraph.pdf430.38KB
GraphConvolutionalNetworkswithArgument-AwarePoolingforEventDetection.pdf324.7KB
GraphConvolutionalNetworksforTextClassification.pdf1.83MB
GraphConvolutionalEncodersforSyntax-awareNeuralMachineTranslation.pdf346.9KB
GraphConvolutionoverPrunedDependencyTreesImprovesRelationExtraction.pdf784.41KB
ExploringGraph-structuredPassageRepresentationforMulti-hopReadingComprehensionwithGraphNeuralNetworks..pdf453.5KB
ExploitingSemanticsinNeuralMachineTranslationwithGraphConvolutionalNetworks.pdf604.59KB
End-to-EndRelationExtractionusingLSTMsonSequencesandTreeStructures.pdf363.06KB
EncodingSentenceswithGraphConvolutionalNetworksforSemanticRoleLabeling.pdf621.87KB
AGraph-to-SequenceModelforAMR-to-TextGeneration.pdf290.15KB
science
VisualInteractionNetworks-LearningaPhysicsSimulatorfromVide.o.pdf5.41MB
VAIN-AttentionalMulti-agentPredictiveModeling.pdf423.97KB
UnderstandingKinRelationshipsinaPhoto.pdf1.44MB
TranslatingEmbeddingsforModelingMulti-relationalData.pdf414.17KB
TrafficGraphConvolutionalRecurrentNeuralNetwork-ADeepLearningFrameworkforNetwork-ScaleTrafficLearningandForecasting.pdf1.45MB
SymbolicGraphReasoningMeetsConvolutions.pdf3.23MB
StructuredDialoguePolicywithGraphNeuralNetworks.pdf779.24KB
Spatio-TemporalGraphConvolutionalNetworks-ADeepLearningFrameworkforTrafficForecasting.pdf895.05KB
SpatialTemporalGraphConvolutionalNetworksforSkeleton-BasedActionRecognition.pdf1.5MB
SituationRecognitionwithGraphNeuralNetworks.pdf5.27MB
Semi-supervisedUserGeolocationviaGraphConvolutionalNetworks.pdf1.13MB
Self-AttentionwithRelativePositionRepresentations.pdf229.86KB
Relationalneuralexpectationmaximization-Unsuperviseddiscoveryofobjectsandtheirinteractions.pdf1.15MB
Relationalinductivebiasforphysicalconstructioninhumansandmachines.pdf1022.51KB
RelationalDeepReinforcementLearning.pdf6.81MB
ProteinInterfacePredictionusingGraphConvolutionalNetworks.pdf837.75KB
NeuralRelationalInferenceforInteractingSystems.pdf2.83MB
NeuralModuleNetworks.pdf1.03MB
NeuralCombinatorialOptimizationwithReinforcementLearning.pdf393.17KB
NerveNetLearningStructuredPolicywithGraphNeuralNetworks.pdf3.11MB
MolecularGraphConvolutions-MovingBeyondFingerprints.pdf2.08MB
MetacontrolforAdaptiveImagination-BasedOptimization.pdf1.6MB
LearningtoRepresentProgramswithGraphs.pdf421.9KB
LearningMultiagentCommunicationwithBackpropagation.pdf4.13MB
Learningmodel-basedplanningfromscratch.pdf1.28MB
LearningHuman-ObjectInteractionsbyGraphParsingNeuralNetworks.pdf3.91MB
LearningGraphicalStateTransitions.pdf1.47MB
LearningDeepGenerativeModelsofGraphs.pdf2.31MB
LearningConditionedGraphStructuresforInterpretableVisualQuestionAnswering.pdf8.48MB
LearningaSATSolverfromSingle-BitSupervision.pdf1.89MB
InteractionNetworksforLearningaboutObjects,RelationsandPhysics.pdf1.91MB
InferenceinProbabilisticGraphicalModelsbyGraphNeuralNetworks.pdf3.07MB
ImprovedSemanticRepresentationsFromTree-StructuredLongShort-TermMemoryNetworks.pdf304.16KB
HyperbolicAttentionNetworks.pdf3.08MB
HybridApproachofRelationNetworkandLocalizedGraphConvolutionalFilteringforBreastCancerSubtypeClassification.pdf2.52MB
GraphRNN-GeneratingRealisticGraphswithDeepAuto-regressiveModels.pdf2.43MB
Graphnetworksaslearnablephysicsenginesforinferenceandcontrol.pdf2.72MB
GraphConvolutionalNeuralNetworksforWeb-ScaleRecommenderSystems.pdf9.84MB
GraphConvolutionalMatrixCompletion.pdf732.99KB
GeometricMatrixCompletionwithRecurrentMulti-GraphNeuralNetworks.pdf6.99MB
EffectiveApproachestoAttention-basedNeuralMachineTranslation.pdf243.97KB
DynamicEdge-ConditionedFiltersinConvolutionalNeuralNetworksonGraphs.pdf567.07KB
Discoveringobjectsandtheirrelationsfromentangledscenerepresentations.pdf4.99MB
DeepInf-Modelinginfluencelocalityinlargesocialnetworks.pdf1.07MB
DeepGraphInfomax.pdf8.15MB
Cross-SentenceN-aryRelationExtractionwithGraphLSTMs.pdf540.89KB
Convolutionalnetworksongraphsforlearningmolecularfingerprints.pdf785.36KB
ConversationModelingonRedditusingaGraph-StructuredLSTM.pdf682.35KB
ConstructingNarrativeEventEvolutionaryGraphforScriptEventPrediction.pdf654.87KB
ConstrainedGenerationofSemanticallyValidGraphsviaRegularizingVariationalAutoencoders.pdf567.14KB
CombiningNeuralNetworkswithPersonalizedPageRankforClassificationonGraphs.pdf483.25KB
BeyondCategories-TheVisualMemexModelforReasoningAboutObjectRelationships.pdf618.71KB
Attention,LearntoSolveRoutingProblems!.pdf1.48MB
Attend,Infer,Repeat-FastSceneUnderstandingwithGenerativeModels.pdf1.3MB
AdversarialAttackonGraphStructuredData.pdf593.12KB
ActionSchemaNetworks-GeneralisedPolicieswithDeepLearning.pdf1.67MB
Asimpleneuralnetworkmoduleforrelationalreasoning.pdf1.37MB
ANoteonLearningAlgorithmsforQuadraticAssignmentwithGraphNeuralNetworks.pdf340.4KB
ACompositionalObject-BasedApproachtoLearningPhysicalDynamics.pdf4.26MB
knowledgegraph
Zero-shotRecognitionviaSemanticEmbeddingsandKnowledgeGraphs.pdf1.63MB
TheMoreYouKnow-UsingKnowledgeGraphsforImageClassification.pdf2.31MB
Representationlearningforvisual-relationalknowledgegraphs.pdf6.9MB
Multi-LabelZero-ShotLearningwithStructuredKnowledgeGraphs.pdf1.36MB
ModelingSemanticswithGatedGraphNeuralNetworksforKnowledgeBaseQuestionAnswering.pdf437.8KB
KnowledgeTransferforOut-of-Knowledge-BaseEntities-AGraphNeuralNetworkApproach.pdf355.22KB
DynamicGraphGenerationNetwork-GeneratingRelationalKnowledgefromDiagrams.pdf1.19MB
DeepReasoningwithKnowledgeGraphforSocialRelationshipUnderstanding.pdf2.76MB
Cross-lingualKnowledgeGraphAlignmentviaGraphConvolutionalNetworks.pdf432.63KB
image
VisualQuestionAnswering
OutoftheBox-ReasoningwithGraphConvolutionNetsforFactualVisualQuestionAnswering(1).pdf2.45MB
Graph-StructuredRepresentationsforVisualQuestionAnswering.pdf3.74MB
SemanticSegmentation
PointNet-DeepLearningonPointSetsfor3DClassificationandSegmentation.pdf8.66MB
Modelingpolypharmacysideeffectswithgraphconvolutionalnetworks.pdf4.18MB
Large-scalePointCloudSemanticSegmentationwithSuperpointGraphs.pdf4.83MB
DynamicGraphCNNforLearningonPointClouds.pdf5.07MB
3DGraphNeuralNetworksforRGBDSemanticSegmentation.pdf2.23MB
RegionClassification
IterativeVisualReasoningBeyondConvolutions..pdf3.91MB
ObjectDetection
RelationNetworksforObjectDetection.pdf906.66KB
LearningRegionfeaturesforObjectDetection.pdf1.68MB
InteractionDetection
Structural-RNN-DeepLearningonSpatio-TemporalGraphs.pdf1.1MB
Imageclassification
Few-ShotLearningwithGraphNeuralNetworks.pdf1.69MB
graphgeneration
NetGAN-GeneratingGraphsviaRandomWalks(1).pdf1.67MB
MolGAN-Animplicitgenerativemodelforsmallmoleculargraphs(1).pdf1.1MB
GraphConvolutionalPolicyNetworkforGoal-DirectedMolecularGraphGeneration.pdf517.97KB
combinatorialoptimization
LearningCombinatorialOptimizationAlgorithmsoverGraphs.pdf2.91MB
CombinatorialOptimizationwithGraphConvolutionalNetworksandGuidedTreeSearch(1).pdf537.04KB
深度学习论文精讲-BERT模型
9.8-论文总结分析.mp476.41MB
8.7-BERT模型训练策略.mp442.95MB
7.6-向量特征编码方法.mp424.65MB
6.5-输入数据特殊编码字符解析.mp443.88MB
5.4-预训练模型的作用.mp418.43MB
4.3-模型在NLP领域应用效果.mp433.56MB
3.2-BERT模型摘要概述.mp432.28MB
2.1-论文讲解思路概述.mp414.77MB
1.课程介绍.mp436.9MB
Resnet论文解读
13-额外补充-Resnet论文解读.mp4117.38MB
ICCV2021
解压密码:iccv2021
CVPR行人重识别论文解读
6.5-图卷积模块实现方法.mp423.49MB
5.4-基于图卷积构建人体拓扑关系.mp425.86MB
4.3-局部特征热度图计算.mp421.11MB
2.2-图卷积与匹配的作用.mp420.81MB
1.1-关键点位置特征构建.mp417.96MB
cvpr2021
解压密码:cvpr2021
CNN_不能错过的10篇论文
Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf1.24MB
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf1.35MB
1512.03385v1_DeepResidualLearningforImageRecognition.pdf800.18KB
1506.02025_SpatialTransformerNetworks.pdf7.89MB
1506.01497v3_FasterR-CNN.pdf6.59MB
1504.08083_FastR-CNN.pdf713.99KB
1412.2306v2_DeepVisual-SemanticAlignmentsforGeneratingImageDescriptions.pdf5.21MB
1409.1556v6_VERYDEEPCONVOLUTIONALNetworks.pdf195.32KB
1406.2661v1_GenerativeAdversarialNets.pdf518.05KB
1311.2901v3_VisualizingandUnderstandingConvolutionalNetworks.pdf34.56MB
1311.2524v5_R_CNN.pdf6.23MB
五:深度学习神经网络基础教程
神经网络模型基础课件资料
Deep-Learning-with-PyTorch-Tutorials.zip80.87MB
CNN+RNN+GAN
源代码和PPT在Github下载.txt72Byte
课程安装软件-Win10
pycharm-community-2019.1.1.exe231.79MB
cudnn-10.0-windows10-x64-v7.5.0.56(1).zip213.78MB
cuda_10.0.130_411.31_win10.exe2.04GB
Anaconda3-2019.03-Windows-x86_64.exe661.66MB
课程安装软件-Ubuntu18.04
cudnn-10.0-linux-x64-v7.5.0.56.tgz412.76MB
cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb1.55GB
Anaconda3-2019.03-Linux-x86_64.sh654.13MB
RNN循环神经网络基础
9.课时9LSTM中Layer的使用.mp412.17MB
8.课时8LSTM基本原理-2.mp416.19MB
7.课时7LSTM基本原理-1.mp412.95MB
6.课时6项目实战-时间序列预测问题.mp419.59MB
5.课时5循环神经网络中Layer的使用-2.mp414.44MB
4.课时4循环神经网络中Layer使用-1.mp416.04MB
3.课时3循环神经网络基本原理-2.mp416.3MB
2.课时2循环神经网络基本原理-1.mp413.68MB
11.课时11项目实战-情感分类问题.mp433.45MB
10.课时10RNN训练难题—梯度弥散与梯度爆炸.mp423.86MB
1.课时1时间序列介绍.mp421.59MB
GAN对抗生成网络基础
9GAN实战-1.flv16.82MB
8WGAN-GP原理.flv30.63MB
7EM距离.flv19.16MB
6GAN训练难题.flv37.04MB
5纳什均衡-2.flv35.39MB
4纳什均衡-1.flv19.17MB
3生成对抗网络.flv25.78MB
2画家的成长历程.flv29.46MB
12WGAN实战-2.flv35.24MB
11WGAN实战-1.flv19.71MB
10GAN实战-2.flv33.53MB
1数据的分布.flv17.67MB
CNN卷积神经网络基础
9-池化与采样操作讲解.mp417.02MB
8-卷积神经网络图解-4.mp426.54MB
7-卷积神经网络图解-3.mp425.8MB
6-卷积神经网络图解-2.mp430.4MB
5-卷积神经网络图解-1.mp436.88MB
4-卷积运算详解-4.mp421.91MB
3-卷积运算详解-3.mp428.37MB
2-卷积运算详解-2.mp427.98MB
23-ResNet实战-4.mp417.54MB
22-ResNet实战-3.mp415.11MB
21-ResNet实战-2.mp414.52MB
20-ResNet实战-1.mp414.3MB
1-卷积运算详解-1.mp430.81MB
19-ResNet,DenseNet详解.mp418.99MB
18-ResNet,DenseNet详解.mp418.06MB
17-BatchNorm-2.mp430.27MB
15-经典卷积神经网络详解-2.mp413.17MB
14-经典卷积神经网络详解-1.mp416.68MB
13-CIFAR100与VGG13实战-4.mp410.4MB
12-CIFAR100与VGG13实战-3.mp414.83MB
11-CIFAR100与VGG13实战-2.mp413.69MB
10-CIFAR100与VGG13实战-1.mp413.99MB
四:机器学习基础算法教程
02.机器学习算法课件资料
机器学习算法PPT
文本分析.pdf522.2KB
时间序列分析.pdf767.26KB
9-LDA与PCA算法.pdf1.04MB
8-xgboost.pdf932.12KB
7-推荐系统.pdf1.97MB
6-支持向量机.pdf1.29MB
5-贝叶斯算法.pdf539.46KB
4-聚类算法.pdf788.33KB
3-决策树与集成算法.pdf1MB
2-回归算法.pdf1.2MB
1-AI入学指南.pdf658.64KB
12-word2vec.pdf2.37MB
11-神经网络.pdf11.7MB
10-EM算法.pdf811.45KB
部分代码资料
9-聚类算法实验分析
聚类算法-实验.zip1.71MB
mldata
mnist-original.mat52.87MB
8-Kmeans代码实现
Kmeans-代码实现.zip5.03MB
7-聚类算法-Kmeans&Dbscan原理
4-聚类算法.pdf788.33KB
6-逻辑回归实验分析
逻辑回归-实验.zip1.7MB
5-逻辑回归代码实现
逻辑回归-代码实现.zip5.04MB
3-线性回归实验分析
线性回归-实验.zip643.27KB
3-模型评估方法
模型评估方法.ipynb91.18KB
img
9.png121.64KB
8.png74.83KB
7.png114.25KB
6.png114.92KB
5.png73.07KB
4.png110.41KB
3.png81.77KB
2.png110.46KB
1.png150.08KB
2-线性回归代码实现
线性回归-代码实现.zip5.9MB
1-线性回归原理推导
2-回归算法.pdf1.2MB
15-支持向量机原理推导
6-支持向量机.pdf1.29MB
14-集成算法实验分析
随机森林与集成算法-实验.zip11.88MB
mldata
mnist-original.mat52.87MB
13-集成算法原理
3-决策树与集成算法.pdf1MB
12-决策树实验分析
决策树算法-实验.zip284.63KB
11-决策树代码实现
决策树-代码实现.zip6.14KB
10-决策树原理
3-决策树与集成算法.pdf1MB
01.机器学习经典算法精讲视频课程
课程简介
Python机器学习实训营.docx11.29KB
项目截图
QQ截图20190624141428.png140.94KB
QQ截图20190624141330.png256.27KB
QQ截图20190624141231.png103.51KB
QQ截图20190624141129.png137.84KB
1.png160.05KB
第一章:线性回归原理推导
8-优化参数设置.mp426.8MB
7参数更新方法.mp424.87MB
6-梯度下降通俗解释.mp420.79MB
5-参数求解.mp430.74MB
4-似然函数的作用.mp429.04MB
3-独立同分布的意义.mp424.48MB
2-误差项定义.mp426.5MB
1-回归问题概述.mp419.65MB
0-课程简介.mp434.95MB
第五章:逻辑回归原理推导
2-化简与求解.mp429.45MB
1-逻辑回归算法原理.mp423MB
第四章:线性回归实验分析
线性回归
1-实验目标分析.mp420.5MB
9-多项式回归
9-多项式回归.mp437.56MB
8-不同策略效果对比
8-不同策略效果对比.mp433.19MB
7-MiniBatch方法
7-MiniBatch方法.mp431.23MB
6-随机梯度下降得到的效果
6-随机梯度下降得到的效果.mp444.29MB
5-学习率对结果的影响
5-学习率对结果的影响.mp432.27MB
4-梯度下降模块
4-梯度下降模块.mp420.72MB
3-预处理对结果的影响
3-预处理对结果的影响.mp454.85MB
2-参数直接求解方法
2-参数直接求解方法.mp424.6MB
14-实验总结
14-实验总结.mp456.17MB
13-岭回归与lasso
13-岭回归与lasso.mp491.35MB
12-正则化的作用
12-正则化的作用.mp433.82MB
11-样本数量对结果的影响
11-样本数量对结果的影响.mp460.4MB
10-模型复杂度
10-模型复杂度.mp464.95MB
第十章:聚类算法实验分析
聚类
9-应用实例-图像分割
9-应用实例-图像分割_20190805_232021.mp439.45MB
9-应用实例-图像分割.mp439.45MB
8-Kmenas算法存在的问题
8-Kmenas算法存在的问题_20190805_232023.mp434.33MB
8-Kmenas算法存在的问题.mp434.33MB
7-轮廓系数的作用
7-轮廓系数的作用_20190805_232028.mp442.23MB
7-轮廓系数的作用.mp442.23MB
6-如何找到合适的K值
6-如何找到合适的K值_20190805_232026.mp434.7MB
6-如何找到合适的K值.mp434.7MB
5-评估指标-Inertia
5-评估指标-Inertia_20190805_232027.mp448.13MB
5-评估指标-Inertia.mp448.13MB
4-不稳定结果
4-不稳定结果_20190805_232028.mp418.31MB
4-不稳定结果.mp418.31MB
3-建模流程解读
3-建模流程解读_20190805_232032.mp449.18MB
3-建模流程解读.mp449.18MB
2-聚类结果展示
2-聚类结果展示_20190805_232030.mp419.58MB
2-聚类结果展示.mp419.58MB
1-Kmenas算法常用操作
1-Kmenas算法常用操作_20190805_232034.mp441.66MB
1-Kmenas算法常用操作.mp441.66MB
11-DBSCAN算法
11-DBSCAN算法_20190805_232033.mp455.48MB
11-DBSCAN算法.mp455.48MB
10-半监督学习
10-半监督学习_20190805_232033.mp447.43MB
10-半监督学习.mp447.43MB
第十一章:决策树原理
8-回归问题解决.mp418.27MB
7-后剪枝方法.mp424.55MB
6-预剪枝方法.mp425.09MB
5-信息增益率与gini系数.mp418.2MB
4-决策树构造实例.mp425.13MB
3-信息增益原理.mp430.3MB
2-熵的作用.mp422.82MB
1-决策树算法概述.mp424.28MB
第十三章:决策树实验分析
决策树
4-回归树模型
4-回归树模型.mp441.67MB
3-树模型预剪枝参数作用
3-树模型预剪枝参数作用.mp442.67MB
2-决策边界展示分析
2-决策边界展示分析.mp441.2MB
1-树模型可视化展示
1-树模型可视化展示.mp430.7MB
第十二章:决策树代码实现
第五章:决策树
7-测试算法效果
7-测试算法效果.mp422.75MB
6-完成树模型构建
6-完成树模型构建.mp427.92MB
5-数据集切分
5-数据集切分.mp427.5MB
4-熵值计算
4-熵值计算.mp440.08MB
3-整体框架逻辑
3-整体框架逻辑.mp420.41MB
2-递归生成树节点
2-递归生成树节点.mp427.74MB
1-整体模块概述
1-整体模块概述.mp411.68MB
第三章:模型评估方法
分类模型评估
8-ROC曲线
8-ROC曲线.mp431.35MB
7-阈值对结果的影响
7-阈值对结果的影响.mp444.63MB
6-评估指标对比分析
6-评估指标对比分析.mp452.23MB
5-混淆矩阵
5-混淆矩阵.mp423.79MB
4-交叉验证实验分析
4-交叉验证实验分析.mp464.47MB
3-交叉验证的作用
3-交叉验证的作用.mp447.01MB
2-数据集切分
2-数据集切分.mp425.85MB
1-Sklearn工具包简介
1-Sklearn工具包简介.mp436.64MB
第七章:逻辑回归实验分析
6-多分类-softmax.mp460.57MB
5-分类决策边界展示分析.mp461.13MB
4-坐标棋盘制作.mp438.18MB
3-可视化展示.mp433.21MB
2-概率结果随特征数值的变化.mp446.69MB
1-逻辑回归实验概述.mp452.15MB
第六章:逻辑回归代码实现
第二章:逻辑回归
9-训练多分类模型
9-训练多分类模型.mp447.68MB
8-鸢尾花数据集多分类任务
8-鸢尾花数据集多分类任务.mp427.41MB
7-得出最终结果
7-得出最终结果.mp455.31MB
6-梯度计算
6-梯度计算.mp448.52MB
5-迭代优化参数
5-迭代优化参数.mp449.86MB
4-优化目标定义
4-优化目标定义.mp437.97MB
3-完成预测模块
3-完成预测模块.mp436.73MB
2-训练模块功能
2-训练模块功能.mp442.8MB
1-多分类逻辑回归整体思路
1-多分类逻辑回归整体思路.mp420.58MB
12-非线性决策边界
12-非线性决策边界.mp422.6MB
11-决策边界绘制
11-决策边界绘制.mp455.78MB
10-准备测试数据
10-准备测试数据.mp440.83MB
第九章:Kmeans代码实现
第三章:聚类-Kmeans
6-聚类效果展示
6-聚类效果展示.mp452.37MB
5-鸢尾花数据集聚类任务
5-鸢尾花数据集聚类任务.mp432.25MB
4-算法迭代更新
4-算法迭代更新.mp427.91MB
3-样本点归属划分
3-样本点归属划分.mp425.85MB
2-计算得到簇中心点
2-计算得到簇中心点.mp424.11MB
1-Kmeans算法模块概述
Kmeans算法模块概述.mp49.91MB
第二章:线性回归代码实现
第一章:线性回归
7-得到线性回归方程.mp435.82MB
3-实现梯度下降优化模块.mp439.6MB
2-初始化步骤.mp424.11MB
1-线性回归整体模块概述.mp414.46MB
9-多特征回归模型
9-多特征回归模型.mp462.24MB
8-整体流程debug解读
8-整体流程debug解读.mp433.99MB
6-训练线性回归模型
6-训练线性回归模型.mp444.68MB
5-数据与标签定义
5-数据与标签定义.mp443.93MB
4-损失与预测模块
4-损失与预测模块.mp446.72MB
10-非线性回归
10-非线性回归.mp449.21MB
第八章:聚类算法-Kmeans&Dbscan原理
6-DBSCAN可视化展示.mp432.97MB
5-DBSCAN工作流程.mp441.61MB
4-DBSCAN聚类算法.mp429.35MB
3-KMEANS迭代可视化展示.mp431.7MB
2-KMEANS工作流程.mp423.12MB
1-KMEANS算法概述.mp428.94MB
三:超详细人工智能学习大纲
人工智能大纲升级版本.pdf20.32MB
六:计算机视觉实战项目
08.Unet图像分割课程资料
深度学习分割任务.pdf1.07MB
unet++.zip409.6MB
07.MASK-RCNN课程资料
第五章:迁移学习.zip91.92MB
第四章:练手小项目-人体姿态识别demo.zip530.27MB
第三章:基于MASK-RCNN框架训练自己的数据与任务.zip439.38MB
第二章:MaskRcnn网络框架源码详解.zip1.14GB
第六章:物体检测-faster-rcnn
iccv15_tutorial_training_rbg.pdf17.36MB
FasterRcnn.zip2.74GB
faster-rcnn.pptx3.23MB
FasterR-CNNTowardsReal-TimeObjectDetectionwithRegionProposalNetworks.pdf6.49MB
06.YOLOV5目标检测课程资料
YOLO5.zip469.64MB
YOLO.pdf1.88MB
PyTorch-YOLOv3.zip462.21MB
NEU-DET.zip26.68MB
05.OpenCV图像处理课程资料
第十章:项目实战-文档扫描OCR识别.zip44.94MB
第十五章:项目实战-答题卡识别判卷.zip3.07MB
第十四章:项目实战-停车场车位识别.zip111.34MB
第十三章:案例实战-全景图像拼接.zip829.49KB
第十九章:项目实战-目标追踪.zip125.33MB
第十八章:Opencv的DNN模块.zip49.62MB
第九章:项目实战-信用卡数字识别.zip548.1KB
第二十章:人脸关键点定位.zip69.75MB
第二十一章:项目实战-疲劳检测.zip74.15MB
第八章notebook课件.zip1.29MB
第2-7章notebook课件.zip7.28MB
第16-17章notebook课件.zip9.37MB
第11-12章notebook课件.zip52.05MB
04.Unet图像分割实战视频课程
5.mp4321.92MB
4.mp4199.03MB
3.mp4404.95MB
2.mp4199.67MB
1.mp4258.34MB
03.MASK-RCNN目标检测实战视频课程
第一章:物体检测框架-MaskRcnn项目介绍与配置
第五章:必备基础-迁移学习与Resnet网络架构
8-迁移学习效果对比
8-迁移学习效果对比.mp453.12MB
7-加载训练好的权重
7-加载训练好的权重.mp437.98MB
6-shortcut模块
6-shortcut模块.mp440.55MB
5-Resnet基本处理操作
5-Resnet基本处理操作.mp431.42MB
4-Resnet网络细节
4-Resnet网络细节.mp438.85MB
3-Resnet原理
3-Resnet原理.mp4107.27MB
2-迁移学习策略
2-迁移学习策略.mp415.11MB
1-迁移学习的目标
1-迁移学习的目标.mp411.47MB
3-参数配置
0-参数配置.mp497.35MB
2-开源项目数据集
0-开源项目数据集.mp442.25MB
1-Mask-Rcnn开源项目简介
0-Mask-Rcnn开源项目简介.mp487.81MB
0-课程简介
0-课程简介.mp418.57MB
第四章:练手小项目-人体姿态识别demo
3-流程与结果演示
3-流程与结果演示.mp448.27MB
2-网络架构概述
2-网络架构概述.mp432.38MB
1-COCO数据集与人体姿态识别简介
1-COCO数据集与人体姿态识别简介.mp447.16MB
第三章:基于MASK-RCNN框架训练自己的数据与任务
6-测试与展示模块
6-测试与展示模块.mp438.28MB
5-基于标注数据训练所需任务
5-基于标注数据训练所需任务.mp439.36MB
4-maskrcnn源码修改方法
4-maskrcnn源码修改方法.mp463.01MB
3-完成训练数据准备工作
3-完成训练数据准备工作.mp426.13MB
2-使用labelme进行数据与标签标注
2-使用labelme进行数据与标签标注.mp425.83MB
1-Labelme工具安装
1-Labelme工具安装.mp414.08MB
第六章:必备基础-物体检测FasterRcnn系列
7-论文解读-4-网络细节
论文解读-4-网络细节.mp4266.79MB
6-论文解读-3-损失函数定义
论文解读-3-损失函数定义.mp4209.66MB
5-论文解读-2-RPN网络结构
论文解读-2-RPN网络结构.mp4114.12MB
4-论文解读-1-论文整体概述
论文解读-1.mp4121.72MB
3-三代算法-3-faster-rcnn概述
三代算法-3-faster-rcnn概述.mp429.66MB
2-三代算法-2-深度学习经典检测方法
三代算法-2-深度学习经典检测方法.mp439.13MB
1-三代算法-1-物体检测概述
三代算法-1-物体检测概述.mp436.53MB
第二章:MaskRcnn网络框架源码详解
9-正负样本选择与标签定义
9-正负样本选择与标签定义.mp427.31MB
8-DetectionTarget层的作用
8-DetectionTarget层的作用.mp425.3MB
7-Proposal层实现方法
7-Proposal层实现方法.mp432.9MB
6-候选框过滤方法
6-候选框过滤方法.mp415.3MB
5-RPN层的作用与实现解读
5-RPN层的作用与实现解读.mp430.41MB
4-基于不同尺度特征图生成所有框
4-基于不同尺度特征图生成所有框.mp432.51MB
3-生成框比例设置
3-生成框比例设置.mp427.86MB
2-FPN网络架构实现解读
2-FPN网络架构实现解读.mp455.16MB
1-FPN层特征提取原理解读
1-FPN层特征提取原理解读.mp441.63MB
12-整体框架回顾
12-整体框架回顾.mp428.39MB
11-RorAlign操作的效果
11-RorAlign操作的效果.mp425.33MB
10-RoiPooling层的作用与目的
10-RoiPooling层的作用与目的.mp432.95MB
02.YOLOV5目标检测视频课程
7-输出结果与项目总结.mp432.44MB
6-缺陷检测模型培训.mp427.21MB
5-项目参数配置.mp418.87MB
4-各版本模型介绍.mp424.31MB
3-标签转格式脚本制作.mp423.84MB
2-数据与标签配置方法.mp428.38MB
1.任务需求与项目概述.mp412.45MB
01.OpenCV图像处理实战视频课程
项目实战一:信用卡数字识别
5-模板匹配得出识别结果
5-模板匹配得出识别结果.mp447.17MB
4-输入数据处理方法
4-输入数据处理方法.mp428.43MB
3-模板处理方法
3-模板处理方法.mp423.33MB
2-环境配置与预处理
2-环境配置与预处理.mp434.42MB
1-总体流程与方法讲解
总体流程与方法讲解.mp420.27MB
项目实战五:答题卡识别判卷
4-选项判断识别
4-选项判断识别.mp456.6MB
3-填涂轮廓检测
3-填涂轮廓检测.mp425.27MB
2-预处理操作
2-预处理操作.mp423.72MB
1-整体流程与效果概述
1-整体流程与效果概述.mp429.14MB
项目实战四:停车场车位识别
8-基于视频的车位检测
8-基于视频的车位检测.mp4135.13MB
7-识别模型构建
7-识别模型构建.mp440.85MB
6-车位区域划分
6-车位区域划分.mp456.77MB
5-按列划分区域
5-按列划分区域.mp454.11MB
4-车位直线检测
4-车位直线检测.mp460.83MB
3-图像数据预处理
3-图像数据预处理.mp456.29MB
2-所需数据介绍
2-所需数据介绍.mp434.02MB
1-任务整体流程
1-任务整体流程.mp471.02MB
项目实战三:全景图像拼接
4-流程解读
4-流程解读.mp421.39MB
2-图像拼接方法
2-图像拼接方法.mp444.55MB
2-RANSAC算法
2-RANSAC算法.mp434.01MB
1-特征匹配方法
1-特征匹配方法.mp428.13MB
项目实战二:文档扫描OCR识别
6-文档扫描识别效果
6-文档扫描识别效果.mp428.59MB
5-tesseract-ocr安装配置
5-tesseract-ocr安装配置.mp440.87MB
4-透视变换结果
4-透视变换结果.mp432.43MB
3-原始与变换坐标计算
3-原始与变换坐标计算.mp425.84MB
2-文档轮廓提取
2-文档轮廓提取.mp427.37MB
1-整体流程演示
1-整体流程演示.mp421.22MB
二:AI必读经典书籍
02.AI必读经典书籍
OpenCV书籍.rar63.15MB
04.计算机视觉相关书籍
超详细的计算机视觉书籍.zip1.03GB
03.深度学习相关书籍
深度学习技术图像处理入门by杨培文,胡博强().pdf125.1MB
深度学习(花园书).pdf32.99MB
Tensorflow技术解析与实战.pdf39.49MB
《神经网络与深度学习》(邱锡鹏-20191121).pdf7.02MB
《TensorFlow2.0深度学习算法实战教材》-中文版教材分享.pdf21.41MB
21年最新-李沐《动手学深度学习第二版》中、英文版免费分享
Dive-into-DL-Pytorch.pdf33.5MB
d2l-zh-pytorch.pdf18.1MB
d2l-en-pytorch.pdf26.97MB
《深度学习之PyTorch物体检测实战》PDF+源代码
深度学习之PyTorch物体检测实战论文导引.docx30.41KB
深度学习之PyTorch物体检测实战.pdf11.64MB
深度学习之PyTorch物体检测实战.mobi12.71MB
深度学习之PyTorch物体检测实战.epub10.35MB
源代码
GitHub地址.txt57Byte
Detection-PyTorch-Notebook
README.md29Byte
chapter8
retinanet.py1.3KB
nms.py895Byte
chapter7
squeezenet_fire.py978Byte
shufflenet_v1.py1.94KB
mobilenet_v2_block.py743Byte
mobilenet_v2.py4.11KB
mobilenet_v1.py1.45KB
chapter6
yolov2-pytorch
train.py4.7KB
test.py4.93KB
requirements.txt64Byte
README.md4.63KB
make.sh488Byte
demo.py2.73KB
darknet.py12.01KB
utils
yolo.pyx1.69KB
yolo.py7.31KB
yolo.c290.81KB
timer.py1.08KB
nms_wrapper.py866Byte
network.py4.31KB
im_transform.py973Byte
build.py6KB
bbox.pyx9.24KB
bbox.c449.75KB
__init__.py0Byte
pycocotools
UPSTREAM_REV80Byte
maskApi.h1.88KB
maskApi.c7.52KB
mask.py3.96KB
license.txt1.5KB
cocoeval.py20.28KB
coco.py15.08KB
_mask.pyx10.46KB
_mask.c583.59KB
__init__.py21Byte
nms
py_cpu_nms.py1.03KB
nms_kernel.cu4.95KB
gpu_nms.pyx1.08KB
gpu_nms.hpp146Byte
cpu_nms.pyx2.19KB
__init__.py0Byte
.gitignore15Byte
layers
__init__.py0Byte
roi_pooling
roi_pool_py.py2.21KB
roi_pool.py3.17KB
build.py822Byte
__init__.py0Byte
src
roi_pooling_cuda.h420Byte
roi_pooling_cuda.c2.75KB
roi_pooling.h178Byte
roi_pooling.c4.01KB
cuda
roi_pooling_kernel.h767Byte
roi_pooling_kernel.cu7.82KB
_ext
__init__.py0Byte
roi_pooling
__init__.py385Byte
reorg
reorg_layer.py1.59KB
build.py802Byte
__init__.py0Byte
src
reorg_cuda_kernel.h251Byte
reorg_cuda_kernel.cu1.8KB
reorg_cuda.h122Byte
reorg_cuda.c453Byte
reorg_cpu.h123Byte
reorg_cpu.c1.02KB
_ext
__init__.py0Byte
reorg_layer
__init__.py385Byte
demo
scream.jpg170.42KB
ragged-edge-london-office-6.jpg595.12KB
person.jpg111.21KB
horses.jpg130.37KB
giraffe.jpg373.99KB
eagle.jpg138.56KB
dog.jpg159.92KB
2007_000039.jpg63.15KB
out
scream.jpg72.08KB
ragged-edge-london-office-6.jpg1.4MB
person.jpg121.59KB
horses.jpg145.69KB
giraffe.jpg231.73KB
eagle.jpg155.64KB
dog.jpg181.9KB
2007_000039.jpg66.52KB
datasets
voc_eval.py7.02KB
pascal_voc.py10.63KB
imdb.py5.02KB
__init__.py0Byte
cfgs
config_voc.py561Byte
config.py2.7KB
__init__.py0Byte
exps
darknet19_exp2.py447Byte
darknet19_exp1.py447Byte
__init__.py0Byte
chapter5
ssd-pytorch
train.py8.07KB
test.py3.78KB
ssd.py7.15KB
README.md7.18KB
LICENSE1.06KB
eval.py15.5KB
.gitignore1.42KB
.gitattributes110Byte
weights
vgg16_reducedfc.pth78.14MB
utils
augmentations.py13.15KB
__init__.py42Byte
__pycache__
augmentations.cpython-35.pyc15.66KB
__init__.cpython-35.pyc182Byte
layers
box_utils.py9.61KB
__init__.py48Byte
modules
multibox_loss.py5.82KB
l2norm.py758Byte
__init__.py105Byte
__pycache__
multibox_loss.cpython-35.pyc4.18KB
l2norm.cpython-35.pyc1.3KB
__init__.cpython-35.pyc262Byte
functions
prior_box.py1.95KB
detection.py2.63KB
__init__.py97Byte
__pycache__
prior_box.cpython-35.pyc1.91KB
detection.cpython-35.pyc2.51KB
__init__.cpython-35.pyc259Byte
__pycache__
box_utils.cpython-35.pyc8.37KB
__init__.cpython-35.pyc175Byte
doc
ssd.png71.03KB
SSD.jpg47.22KB
detection_examples.png1.96MB
detection_example2.png318.78KB
detection_example.png365.21KB
demo
live.py3KB
demo.ipynb1.26MB
__init__.py0Byte
data
voc0712.py6.4KB
example.jpg136.8KB
config.py726Byte
__init__.py1.31KB
scripts
VOC2012.sh763Byte
VOC2007.sh971Byte
COCO2014.sh1.91KB
__pycache__
voc0712.cpython-35.pyc6.82KB
config.cpython-35.pyc948Byte
coco.cpython-35.pyc7.78KB
__init__.cpython-35.pyc1.82KB
__pycache__
ssd.cpython-35.pyc6.65KB
.idea
workspace.xml21.11KB
vcs.xml183Byte
ssd.pytorch-master.iml398Byte
modules.xml288Byte
misc.xml185Byte
encodings.xml135Byte
dssd-pytorch
tcb.py722Byte
arm.py764Byte
chapter4
faster-rcnn-pytorch
trainval_net.py14.75KB
test_net.py11.89KB
requirements.txt80Byte
README.md6.86KB
LICENSE1.04KB
demo.py13.36KB
_init_paths.py312Byte
.gitignore2.82KB
logs
vgg_voc
events.out.tfevents.1542983031.aizz291Byte
events.out.tfevents.1542007867.aizz567Byte
events.out.tfevents.1542007598.aizz25Byte
events.out.tfevents.1542007525.aizz25Byte
events.out.tfevents.1542007423.aizz25Byte
events.out.tfevents.1542007135.aizz25Byte
events.out.tfevents.1542006392.aizz25Byte
events.out.tfevents.1541646048.aizz1.24MB
events.out.tfevents.1541645839.aizz25Byte
events.out.tfevents.1541645748.aizz25Byte
events.out.tfevents.1541645707.aizz25Byte
lib
setup.py4.69KB
make.sh1.25KB
roi_data_layer
roidb.py4KB
roibatchLoader.py8.59KB
minibatch.py2.85KB
__init__.py248Byte
pycocotools
UPSTREAM_REV80Byte
maskApi.h1.88KB
maskApi.c7.52KB
mask.py3.95KB
license.txt1.5KB
cocoeval.py19.44KB
coco.py14.71KB
_mask.pyx10.46KB
__init__.py21Byte
model
__init__.py0Byte
utils
net_utils.py7.32KB
logger.py2.41KB
config.py11.54KB
blob.py1.6KB
bbox.pyx3.35KB
__init__.py0Byte
.gitignore15Byte
rpn
rpn.py4.19KB
proposal_target_layer_cascade.py9.1KB
proposal_layer.py6.87KB
generate_anchors.py3.17KB
bbox_transform.py9.07KB
anchor_target_layer.py8.79KB
__init__.py0Byte
roi_pooling
build.py875Byte
__init__.py0Byte
src
roi_pooling_kernel.h767Byte
roi_pooling_kernel.cu9.35KB
roi_pooling_cuda.h420Byte
roi_pooling_cuda.c2.77KB
roi_pooling.h178Byte
roi_pooling.c4.01KB
modules
roi_pool.py524Byte
__init__.py0Byte
functions
roi_pool.py1.73KB
__init__.py0Byte
_ext
__init__.py0Byte
roi_pooling
__init__.py385Byte
roi_crop
make.sh219Byte
build.py881Byte
__init__.py0Byte
src
roi_crop_cuda_kernel.h2.75KB
roi_crop_cuda_kernel.cu16.77KB
roi_crop_cuda.h481Byte
roi_crop_cuda.c4.6KB
roi_crop.h659Byte
roi_crop.c22.57KB
modules
roi_crop.py287Byte
gridgen.py16.14KB
__init__.py0Byte
functions
roi_crop.py1002Byte
gridgen.py2.18KB
crop_resize.py1.51KB
__init__.py0Byte
_ext
__init__.py0Byte
roi_crop
__init__.py382Byte
crop_resize
__init__.py310Byte
roi_align
make.sh211Byte
build.py902Byte
__init__.py0Byte
src
roi_align_kernel.h1.23KB
roi_align_kernel.cu7.55KB
roi_align_cuda.h369Byte
roi_align_cuda.c2.37KB
roi_align.h361Byte
roi_align.c7.39KB
modules
roi_align.py1.63KB
__init__.py0Byte
functions
roi_align.py1.96KB
__init__.py0Byte
_ext
__init__.py0Byte
roi_align
__init__.py383Byte
nms
nms_wrapper.py757Byte
nms_kernel.cu4.95KB
nms_gpu.py299Byte
nms_cpu.py862Byte
make.sh209Byte
build.py850Byte
__init__.py0Byte
.gitignore15Byte
src
nms_cuda_kernel.h206Byte
nms_cuda_kernel.cu5.49KB
nms_cuda.h272Byte
_ext
__init__.py0Byte
nms
__init__.py377Byte
faster_rcnn
vgg16.py2.06KB
resnet.py8.58KB
faster_rcnn.py5.65KB
__init__.py0Byte
datasets
voc_eval.py6.5KB
vg_eval.py4.08KB
vg.py16.39KB
pascal_voc_rbg.py10.97KB
pascal_voc.py14.74KB
imdb.py8.9KB
imagenet.py8.22KB
factory.py2.61KB
ds_utils.py1.37KB
coco.py11.77KB
__init__.py248Byte
VOCdevkit-matlab-wrapper
xVOCap.m258Byte
voc_eval.m1.3KB
get_voc_opts.m231Byte
tools
mcg_munge.py1.46KB
images
img4_det_res101.jpg89.3KB
img4_det.jpg89.3KB
img4.jpg83KB
img3_det_res101.jpg104.86KB
img3_det.jpg104.86KB
img3.jpg100.36KB
img2_det_res101.jpg111.4KB
img2_det.jpg111.4KB
img2.jpg110.64KB
img1_det_res101.jpg83.85KB
img1_det.jpg83.85KB
img1.jpg76.92KB
cfgs
vgg16.yml287Byte
res50.yml347Byte
res101_ls.yml439Byte
res101.yml363Byte
chapter3
vgg.py938Byte
resnet_bottleneck.py966Byte
inceptionv2.py1.25KB
inceptionv1.py1.3KB
fpn.py3.15KB
detnet_bottleneck.py1.13KB
densenet_block.py1.11KB
chapter2
visdom.py366Byte
perception_sequential.py375Byte
perception.py732Byte
mlp.py437Byte
chapter1
model-evaluation
README.md315Byte
evaluation.py464Byte
evaluation.ipynb65.1KB
lib
utils.pyc0Byte
utils.py0Byte
Evaluator.pyc13.28KB
Evaluator.py4.43KB
detection.pyc13.06KB
detection.py3.64KB
__pycache__
utils.cpython-36.pyc5.37KB
Evaluator.cpython-36.pyc3.85KB
detection.cpython-36.pyc2.86KB
data
results
class2.png14.99KB
class1.png14.96KB
groundtruths
1.txt110Byte
detections
1.txt162Byte
conf
conf.yaml459Byte
arial.ttf304.33KB
02.机器学习相关书籍
图解机器学习.pdf59.4MB
凸优化.pdf5.73MB
机器学习在量化投资中的应用研究_汤凌冰著_北京:电子工业出版社_2014.11_13662591_P157.pdf25.58MB
机器学习实战.pdf13.41MB
机器学习实践指南++案例应用解析+麦好.pdf59.27MB
机器学习个人笔记完整版2.5.pdf7.75MB
机器学习导论原书第2版.pdf77.76MB
机器学习〔中文版〕.pdf9.91MB
机器学习_周志华.pdf37.53MB
吴恩达《MachineLearningYearning》完整中文版
吴恩达MLY
MLY-zh-cn.pdf5MB
《跟着迪哥学Python数据分析与机器学习实战》
《跟着迪哥学Python数据分析与机器学习实战》PDF+唐宇迪.pdf98.83MB
《跟着迪哥学Python数据分析与机器学习实战》.mobi67.29MB
《跟着迪哥学Python数据分析与机器学习实战》.epub40.11MB
01.Python基础书籍
《Python基础教程(第3版)》
源代码.zip87.95KB
Python基础教程(第3版)高清英文版.pdf5.96MB
01.人工智能行业报告
53份人工智能行业报告.zip129.49MB