好听课(haotk.com),助力个人能力素养提升更简单!
首页 > 在线课程 > 理学教程 >  工科数学分析(三)
收藏
课程目录
10.1.1 函数列与函数项级数的基本概念1 10.1.2 函数列与函数项级数的基本概念2 10.2.1 函数项级数研究的基本问题1 10.2.2 函数项级数研究的基本问题2 10.3.1 函数序列一致收敛性的典型例题1 10.3.2 函数序列一致收敛性的典型例题2 10.4 函数项级数的一致收敛性 10.5.1 函数项级数一致收敛的典型例题1 10.5.2 函数项级数一致收敛的典型例题2 10.6.1 狄利克雷和阿贝尔判别方法1 10.6.2 狄利克雷和阿贝尔判别方法2 10.7.1 函数项级数和函数的连续性1 10.7.2 函数项级数和函数的连续性2 10.8 函数项级数和函数的可积性 10.9.1 函数项级数和函数的可微性1 10.9.2 函数项级数和函数的可微性2 10.10 幂级数的收敛区间 10.11.1 幂级数和函数的性质1 10.11.2 幂级数和函数的性质2 10.12.1 泰勒级数1 10.12.2 泰勒级数2 10.13 泰勒级数的应用 10.14.1 幂级数的综合例题(1)1 10.14.2 幂级数的综合例题(1)2 10.15 幂级数的综合例题(2) 10.16 探索类问题 11.1 傅里叶级数 11.2 傅里叶级数逐点问题讨论 11.3 傅里叶级数性质 11.4 傅里叶级数计算(1) 11.5 傅里叶级数(2) 11.6 傅里叶级数(3) 11.7 傅里叶级数(4) 11.8 傅里叶级数平方逼近问题(1) 11.9 傅里叶级数平方逼近问题(2) 11.10 傅里叶积分与傅里叶变换 11.11 傅里叶变换计算 11.12 傅里叶变换性质 11.13 离散傅里叶变换 11.14 快速傅里叶变换 11.15 快速傅里叶变换应用 11.16.1 小波变换初步:信号多分辨分析1 11.16.2 小波变换初步:信号多分辨分析2 11.17 小波变换应用实例 11.18 探索类问题 12.1 N维线性空间与欧几里得空间 12.2 N维线性空间点集的基本概念和性质(1) 12.3 N维向量空间点集的基本概念和性质(2) 12.4 N维线性空间点集例题 12.5 欧几里得空间点列的极限 12.6 欧几里得空间点列的极限与基本定理(1) 12.7 欧几里得空间点列的极限与基本定理(2) 12.8 多元函数的定义 12.9 多元函数极限的定义 12.10 多元函数极限基本理论 12.11 多元函数极限典型例题(1) 12.12 多元函数极限典型例题(2) 12.13 累次极限(1) 12.14 累次极限(2) 12.15 多元函数的连续 12.16 多元函数连续的性质 12.17 多元函数一致连续(1) 12.18 多元函数一致连续(2) 12.19 有界闭集上多元连续函数的性质 12.20 综合例题(1) 12.21 综合例题(2) 12.22 综合例题(3) 12.23 探索类问题 13.1 多元函数的微分学 13.2 函数可微条件(1) 13.3 函数可微条件(2) 13.4 多元函数的求导定理 13.5 多元函数的求导例题(1) 13.6 多元函数的求导例题(2) 13.7 方向导数 13.8 梯度与应用 13.9 高阶偏导数 13.10 高阶偏导数计算(1) 13.11 高阶偏导数计算(2) 13.12 高阶微分计算 13.13 多元函数的中值定理 13.14 多变量函数的Taylor公式 13.15 多元函数的Taylor公式 13.16 Taylor公式应用 13.17 矩阵的几个基本概念和结论 13.18 多元函数的无约束极值问题1 13.19 多元函数的无约束极值问题2 13.20 多变量函数的无约束极值问题3 13.21 最小二乘问题 13.22 函数行列式 13.23 隐函数存在定理 13.24 隐函数存在定理应用1 13.25 隐函数存在定理应用2 13.26 隐函数组存在定理与应用1 13.27 隐函数组存在定理与应用2 13.28 反函数组存在定理与应用 13.29 隐函数的应用:方程换元 13.30 隐函数的应用:变换方程 13.31 隐函数的几何应用(1):曲线的切线与法平面 13.32 隐函数的几何应用(2):曲面的切平面与法线 13.33 隐函数的几何应用(3):综合例题 13.34 条件极值问题(1) 13.35 条件极值问题(2) 13.36 条件极值问题(3) 13.37.1 提高课1 13.37.2 提高课2 13.37.3 提高课3 13.38 探索类问题 14.1 向量函数的微分 14.2 向量与矩阵范数 14.3.1 向量函数的极限1 14.3.2 向量函数的极限2 14.4.1 向量函数的连续与一致连续1 14.4.2 向量函数的连续与一致连续2 14.5 向量函数的导数与微分 14.6 向量函数导数的计算 14.7 向量函数导数计算例题 14.8 向量函数中值定理 14.9 向量函数的应用:证明开普勒定律 14.10 探索类问题 15.1 常微分方程初步 15.2 微分方程和数学建模 15.3 一阶微分方程的分离变量法 15.4 一阶线性微分方程的求解 15.5 一阶线性微分方程求解的综合例题 15.6 可降阶的高阶微分方程 15.7.1 二阶线性微分方程的结构1 15.7.2 二阶线性微分方程的结构2 15.8 二阶常系数线性微分方程(1) 15.9 二阶线性微分方程(2) 15.10 二阶线性微分方程的幂级数解法与欧拉方程 15.11.1 综合例题1 15.11.2 综合例题2 15.12 线性微分方程组的求解(1) 15.13 线性微分方程组的求解(2) 15.14.1 提高课:一阶常微分方程基本理论初步1 15.14.2 提高课:一阶常微分方程基本理论初步2 15.15.1 提高课:常微分方程数值求解初步1 15.15.2 提高课:常微分方程数值求解初步2 15.16 提高课:数学建模:人口模型问题研究 15.17 提高课:数学建模:卫星发射的三级火箭研究 15.18 提高课:数学建模:微分方程组应用 15.19 探索类问题
课程详情
本课程包括函数项级数、傅里叶级数以及傅里叶变换、多元函数极限与连续、多元函数微分学、向量函数微分学、常微分方程、重积分、曲线积分、曲面积分、含参积分。(北京航空航天大学)
本课程包括函数项级数、傅里叶级数以及傅里叶变换、多元函数极限与连续、多元函数微分学、向量函数微分学、常微分方程、重积分、曲线积分、曲面积分、含参积分。(北京航空航天大学)
268455
领取福利

微信扫码领取福利

微信扫码分享